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Congestion Reduction via Personalized Incentives  

EXECUTIVE SUMMARY 

Traffic congestion has become inescapable in large metropolitan areas across the world, 
causing huge economic losses and severely damaging the quality of life. In addition, traffic 
congestion leads to increased level of vehicle emissions which is the dominant source of air 
pollution according to The Transportation Research Board (TRB Special Report 264). To reduce 
traffic congestion, various strategies have been proposed in the past decades, ranging from 
roadway extensions to transportation demand management programs. While many of these 
solutions are not feasible due to limited infrastructure investment, with the projected road 
demand increase, transportation planners must find ways to improve transportation conditions 
in a cost-efficient manner.  

Recently, with advances in sensors, communication and storage technologies, significant 
advances have been made in the procurement and provision of real-time information that 
would be required for the effective control of a transportation system. Yet, the efforts based on 
the collected data, have had limited success to date addressing congestion in most urban cities. 
In addition to improved data acquisition, public access to Geo-positional Systems (GPS)-enabled 
mobile devices has significantly increased over the past decade. According to numerous market 
research reports, the number of U.S. adults owning smartphones have increased to more than 
70%. This number even increased to 94% for young adults (Mobile Fact Sheet Report 2019). 
This significant user penetration level provides an opportunity to develop a platform (such as a 
cellphone application) to communicate with drivers in order to find efficient routing to avoid 
congestion. While such a platform cannot directly enforce the socially optimal routing strategy 
on each driver, they can influence each driver’s decision by providing incentives to each driver. 
Such incentives could be government subsidies or incentives provided by private businesses 
such as giving users’ discounts to bring drivers to their business at certain times of the day. The 
incentives could be offered to individuals through a communication device such as mobile 
cellphones when a congestion is predicted to happen in the network.  

In this research, we developed a real-time (distributed) algorithm for offering personalized 
incentives to individual drivers to make socially optimal routing decisions. Our methodology 
relies on online and historical traffic data collected from various sensors/devices as well as 
individual preferences and routing options. Some of the key features considered in our 
methodology are as follows: individual’s preferences and their (possible) responses to the 
offered incentives; route preferences due to individual safety concerns; stochastic and 
uncertain nature of each driver’s response to the offers made; and each individual’s preference 
among the existing set of incentives. Furthermore, our method was able to avoid creation of 
new congestions in other parts of the network. In our framework, there is no need for 
participation of the entire population and only a fraction of drivers’ participation suffices. In 
addition, our proposed distributed algorithm has theoretical convergence guarantee under a 
mild set of assumptions that are verified with real data.  



 vi 

Finally, we evaluated the performance of the proposed method using data from the Los Angeles 
area. We used the University of Southern California (USC) Archived Data Management System 
(ADMS) that collects, archives, and integrates a variety of transportation datasets from Los 
Angeles, Orange, San Bernardino, Riverside, and Ventura Counties. ADMS includes access to 
real-time traffic datasets from: i) 9,500 highway and arterial loop detectors providing data 
approximately every 1 minute, and ii) 2,500 bus and train GPS location (AVL) data operating 
throughout Los Angeles County. Our numerical evaluations on this data show that the proposed 
framework can lead up to a 27% decrease in the total carbon emission of the system during 
rush hour times. 
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Introduction  

According to the Transportation Statistics Annual Report of 2018, from 2000 to 2018, the total 
number of registered vehicles increased by 19%, and vehicle-miles of travel increased by 15.6% 
[1]. However, during the same period, total lane-miles only expanded by 6% and public road 
and street mileage was merely augmented by 5.1% [1]. The combination of slow transportation 
infrastructure expansion and the growth in the number of registered vehicles have led to 
severe traffic congestion in urban areas. Today, traffic congestion is one of the most prevalent 
issues in large metropolitan areas, resulting in lowered the quality of life for residents and 
economic losses. According to INRIX, a company that provides traffic management services by 
transportation data analysis, the United States’ economy suffered $88 billion in losses and 
United States (U.S.) drivers lost 99 hours due to traffic congestion in 2019 [2]. For instance, in 
Los Angeles, one of the most congested cities in the U.S., each driver lost $1,524 in addition to 
103 hours in 2019 due to traffic congestion [3]. 

In addition to direct economic losses, traffic congestion can worsen air quality and adversely 
affect health conditions. According to the Transportation Research Board, one of the seven 
program units of the National Academies of Sciences, Engineering, and Medicine, vehicle 
emissions are the main cause for air pollution [3]. The escalation of intensity and duration of 
traffic congestion can raise emissions levels [5], and as a result, air pollution (specifically NO2) 
increases with traffic congestion [6]. Based on the study by Hennessy and Wiesenthal, when 
roads are congested, drivers show aggressive behaviors more often, and their stress level rises 
[7]. This research shows that the Likert scale, a psychometric scale which ranges from 0 = “low 
stress level” to 4 = “high stress level”, can increase by two times from 0.8 to 1.73 during high 
levels of congestion. Thus, it can increase the number of accident occurrences [8]. 

As possible solutions to traffic congestion, Cambridge Systematics [9]—which works on 
planning and policy, movement of people and goods, software design and development, and 
effective partnerships and objective analysis—has proposed three categories of strategies: 

1) Adding more capacity; 

2) Transportation System Management and Operation (TSM&O); and 

3) Demand management. 

The first strategy includes expanding infrastructures, such as increasing the number of available 
highway lanes and constructing new roads. While this strategy may result in reducing 
congestion1, different reasons such as opposition from local and national groups, have made 
this strategy very challenging in recent years. In TSM&O, the aim is to improve the efficiency of 
the current transportation infrastructure and manage the short-term demand for the existing 
network. Reversible commuter lanes, dynamic re-timing of traffic signals, providing information 

 

1 The increase in lane miles will increase the Vehicle Miles Traveled (VMT) [94]. Hence, in congested metropolitan 
area, it is unlikely to have congestion improvement by increasing the lane miles [95]. Therefore, this study is not 
verified based on VMT. 
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about travel conditions to travelers, and converting streets to one-way operations are examples 
of TSM&O strategies. Compared to the “adding more capacity" category, the cost of 
implementation in TSM&O strategies is less. While the TSM&O strategies have shown to be 
highly cost-effective, we cannot only rely on TSM&O strategies. The final category, Demand 
Management includes Travel Demand Management (TDM), non-automotive travel modes, and 
land use management. Travel demand management is focused on managing travel demand 
instead of increasing transportation infrastructure. TDM includes putting more people into 
fewer vehicles (e.g., ride-sharing), shifting the time of travel, and removing the need for travel 
altogether (e.g., teleworking). The requirement that travelers drastically change their lifestyle is 
one of the main obstacles of the TDM strategies. Another limitation of TDM is the inflexible 
schedule of workers. Investing in non-automotive modes of travels such as pedestrian 
infrastructure, bike-ways, and bus and rail transit systems is another strategy to decrease the 
rate of travel by personal vehicles. 

The above strategies can be divided into two groups: (a) expanding the transportation 
infrastructure and (b) increasing the efficiency of the existing network. Strategies that are 
based on expanding the roads need a long planning horizon before they can lessen congestion 
[10]. According to the U.S. Census Bureau [10] estimate, the U.S. population will grow by 28 
million by 2030. If low public support for tax increases (needed to expand the transportation 
infrastructure) continues, innovative solutions to utilize the existing network more efficiently 
becomes crucial. Thus, there is an urgent need to make the existing road network more 
efficient. 

In this research project, the focus is on changing drivers’ behavior by offering incentives in 
order to reduce traffic congestion. More precisely, our solution lies in category 3 of the 
Cambridge Systematics strategy framework: Demand Management. Perhaps the closest 
strategy to our solution is pricing mechanisms in the literature. Road pricing policies, such as 
assigning a fee or tax for driving on a highway/road, have been widely studied in theory and 
practice. The work of [12] and [13] study the change in drivers’ behavior by imposing monetary 
penalties on the drivers’ travel (see the book [14], Ph.D. thesis [15], and the references therein). 
In this category, a decline in traffic congestion is expected as a result of discouraging people to 
use congested roads. Such pricing mechanisms could be dependent on different factors such as 
time [16], distance [17], or vehicle characteristics [18]. 

While pricing seems a legitimate solution from a market point of view, issues such as equity 
barriers complicate the implementation of congestion pricing/taxation schemes [19]. In 
particular, in some of the past implementations in Lyon, France; Mexico City, Mexico; and 
Genoa, Italy; congestion pricing was tested, but they failed to achieve permanent 
implementation due to low public acceptance [23]. In addition to equity concerns, complexity 
and uncertainties in designing pricing mechanisms have prevented policymakers from 
implementing advanced congestion pricing schemes [25]. To resolve such barriers, Gu et al. [26] 
proposed pricing models for a barrier area, an area in which drivers can be charged in different 
ways when they enter to meet efficiency and equity concerns. Their model is a joint distance 
and time toll. Based on this model, if a driver travels on very long routes that are not congested, 
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they do not contribute to the traffic congestion so only the amount of time spent in the traffic 
jam is penalized. 

Tradable credits (TCs) or tradable mobility permits (TPMs) are another token-based pricing 
mechanism [27]. These schemes allow certain tokens/credits to be traded among drivers 
through a market mechanism. The total amount of credits is typically considered constant and 
puts a limit on the total number of vehicles in use—see [30] for a review article on this topic. 
Various schemes, such as receiving free travel cards [31], have been proposed in this category. 
In addition, many mathematical programming approaches, such as the ones in [32] and the 
references therein, are proposed for the modeling and algorithms for such token-based 
schemes. The theoretical advantages of such tradable credits have been shown in [33]. While 
such cap-and-trade programs have been implemented in some economic sectors, such as 
airport slot allocation [37], it has not been implemented for individual-level personal travels 
and daily commutes [38] due to the design complexities of such token markets [39]. 

Lately, researchers have paid more attention to positive incentive policies. Based on the 
psychological theory of reactance, rewarding desirable behavior could work better than 
penalizing undesirable behavior [40]. Moreover, rewarding is a more popular policy than the 
taxation approach [40]. While the effectiveness of rewarding in changing the individual’s 
behavior have been shown in [42] and [43], there is a limited number of studies on the 
effectiveness of rewarding policies in the transportation area. Among these studies, the 
INSTANT project [44] has provided positive incentives to motivate commuters to avoid peak 
times for their travel. Peak time or rush hours are the time of the day with maximum 
congestion. The CAPRI project of Stanford [45] is another example of peak avoidance studies 
using positive incentives. This study also encourages other commute modes such as walking 
and biking; and they have shown the effectiveness of the rewarding policy in congestion 
reduction. Another series of studies has been done in the Netherlands on the effectiveness of 
monetary rewards to avoid rush hour driving [46]. They offered incentives to the drivers to 
avoid rush hours (before and after the peak of the traffic in the morning), work from home, or 
choose alternative travel modes such as cycling, carpooling, and public transport. Xianbao et al. 
[49] offered different levels of incentives to alter the drivers’ departure and route choices. They 
provided information about the travel time for each offered departure time, and alternative 
time, so the driver does not depend on her experience in choosing the alternatives. Recently 
[39] offered token form incentives for different travel choices such as route, travel modes, and 
ride-sharing. The proposed model learns individuals’ decisions and adapts to their preferences 
based on their travel history. For each request, a set of choices is generated for the user and 
the more contribution to the network from an alternative, the more valuable incentive was 
offered. While these policies were successful in short-term experiments, the effectiveness of 
the rewarding policy in changing the behavior of individuals does not necessarily result in 
permanent changes in the travelers’ behavior. For example, although the effectiveness of the 
rewarding policy in changing the behavior of individuals was shown in [50], most of the 
individuals returned to their previous behavior in the absence of incentives. In this study, we 
use monetary incentives in our simulation model as the incentive. However, in practice, 
different types of incentives such as tax credits or coupons can also be utilized to change the 
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behavior of the drivers. Our incentives are offered online through the platform (e.g., a 
cellphone app); hence, users who are not planning to use the road segments will not receive 
incentives. 

There have been different choices used as the incentive in transportation studies. Fujii et al. 
[51] used free bus tickets as an incentive to study the changes in the frequency of traveling by 
bus. In a different project in Germany, to study the increase in commuting with bus, a pre-paid 
bus ticket was offered to college students [52]. Also, in Australia, an early bird ticket program 
was offered to relieve the problem of the rail overcrowding during peak hours [53]. Free WiFi 
and discounted tickets fare have been effective for Beijing commuters to motivate them to 
avoid the rush hours of the morning [54]. In the Tripod project [39], they offered token form 
incentives. Earned tokens depend on energy savings, and can be redeemed for goods and 
services at local businesses and agencies that have joined the project. In the CAPRI project [45], 
users of the app collected points, and they could trade 100 points for $1 or use the points to 
play a game in which they may lose points or gain money and points. Knockaert et al. [19] 
provided smartphones to their users and users could receive money for their credits or keep 
the smartphone after the project if they reached a sufficient amount of credits. 

The preferences of the drivers can be considered by the incentive offering platform to give 
personalized offers. Mohan et al. [55] divided effective factors on drivers’ decision into two 
categories of static factors and dynamic factors. The static factors, which are fixed for each 
person, include the number of available transportation options and the distance of nearby 
transit. On the other hand, the dynamic factors, which changes from travel to travel, include 
weather and travel purpose. They found the factors by interviews and surveys, and they 
concluded that with a wide range of considered factors, personalizing can be advantageous for 
travel assistance. Also, the drivers’ preferences can be learned through interaction with the 
individual [[39], [56]]. Personalized incentives can be used to offer a unique alternative for each 
individual. The goal is to make the offer close to the individual’s preferences and maximizes the 
contribution to the network [39] or to minimize the cost of incentives by maximizing the 
probability of acceptance of the alternative [56]. 

The rest of this report is organized as follows. Section “Problem Description” provides a 
description of our problem in two steps of traffic prediction and offering personalized 
incentives for congestion reduction. In Section “Incentive Offering Mechanism”, we model our 
problem for two different scenarios: operating below and above the network capacity. Then to 
solve the second model efficiently, we propose a distributed algorithm. Results of numerical 
experiments for both models are presented in Section “Numerical Experiments” using data 
from the Los Angeles area. 

Problem Description 

From a game-theoretic point of view, drivers are self-interested, and their decisions may 
worsen traffic congestion. The goal of incentive providing mechanisms is to motivate drivers to 
deviate from problematic decisions in favor of congestion reduction. In this research project, 
we offer positive real-time personalized incentives to achieve this goal. We have two main 
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steps in our methodology: In Step I, the traffic condition in the near future is predicted by 
means of the historical traffic data, and the current traffic information. In Step II, predictions 
are used to provide personalized incentives to drivers to take alternative routes and to avoid 
the creation of traffic congestion. The implementation of the proposed model could be through 
a smartphone app where the traffic data can be used to offer online incentives to drivers. In 
addition, smartphones will help the central planner to distribute the computational load for 
finding the optimal incentive offering strategy. 

Step I: Traffic Prediction. The prediction algorithm in Step I provides the required information 
to distinguish between roads with probable congestion and highways with free flow in the near 
future. Whether a reward should be assigned to a road and how much of a reward should be 
considered is based on the remaining capacity in the road segments. This information comes 
from a prediction algorithm with relatively high accuracy and reliability. There has been a wide 
range of studies to predict traffic. To use the ad-hoc traffic prediction algorithms, both the 
performance and the compatibility of the data need to be considered. The traffic data collected 
by loop sensors [[57], [58]] and GPS devices [[59], [60]] has been used to predict future traffic 
conditions. We will use data collected by loop detectors in this work; however, other types of 
traffic data can be used as well. From a methodological point of view, the majority of the most 
recent powerful traffic prediction algorithms are based on deep learning. Ma et al. [61] have 
employed Convolutional Neural Network (CNN), Cui et al. [62] propose a graph convolution 
LSTM, and Li et al. [57] have studied Graph Neural Network combined with Convolutional 
Neural Network (DCRNN). In this project, we build on the DCRNN [57] framework due to its 
reliable performance and compatibility with our data. We have made some modifications to the 
algorithm in order to make prediction performance reliable across all road segments. In 
particular, we changed the training procedure slightly by optimizing for more conservative risk 
measures rather than just the average performance. The implementation of our algorithm can 
be downloaded from [63]. The details of our approach are presented in the Appendix section 
“Robust Traffic Flow Prediction”. 

Step II: Offering Personalized Incentives for Congestion Reduction. In Step II in our framework, 
we offer personalized incentives to the drivers to reduce congestion based on the predicted 
available capacity of the road network in Step I. In particular, we propose a mathematical 
model for the problem of offering personalized incentives to individual drivers to make socially 
optimal routing decisions. Our methodology relies on individual preferences and routing 
options which will be explained in the next section. 

Incentive Offering Mechanisms 

Given the current and historical data of traffic conditions and drivers’ past behavior, our goal is 
to find the “optimal" strategy for offering incentives to individual drivers for reducing 
congestion in the network. To mathematically state our problem, we start by introducing some 
notation. A detailed example that explains our notations can be found in the Appendix section 
“An Example of the Model and Notations”. 
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Let us model the structure of the traffic network with a directed graph 𝒢 = (𝒱, ℰ). Here 𝒱 is 
the collection of all major intersections and ramps, which form the set of nodes in the graph. 
We use the set of edges ℰ to capture the connectivity of the nodes in the graph. Two different 
nodes are adjacent in the graph if it is possible to directly go from one to another without 
passing over any other node. The direction of an edge between two nodes is based on the 
direction of the road from which we can go from one point to another. We also use the 
notation |ℰ| to denote the total number of road segments/edges in our network (i.e., the 
cardinality of the set ℰ). A route is a collection of adjacent edges that starts from one node and 
ends in another node in the graph. We use the one-hot encoding scheme to denote the routes. 

In other words, a given route is represented by a vector 𝑟 ∈ {0,1}|ℰ|. Here, the 𝑘th entry of 
vector 𝑟 is one if the 𝑘th edge is a part of route 𝑟 and it is zero, otherwise. 

Let 𝑇 = {0,1, … , 𝑇} denote the time horizon of interest assuming the system is currently at time 

𝑡 =  0. For any 𝑡 ∈ 𝑇, we use the random vector 𝑣𝑡 ∈ 𝑅|ℰ| to represent the traffic volume on 
different road segments of the network at time 𝑡. More precisely, the 𝑘th entry of 𝑣𝑡 shows the 
total number of vehicles of road segment 𝑘 at time 𝑡. Clearly, 𝑣𝑡 is a stochastic vector and its 
value depends on the incentives offered. Notice that the offered incentives can change the 
drivers' behavior who are using the platform in the future and thus affecting the vector 𝑣𝑡.  

We use 𝒩 to denote the set of drivers that we can influence their behavior through offering 
incentives. Drivers that are included in the set 𝒩 are currently in the system and have sent 
their request to the central planner (e.g., the servers dedicated to the developed cellphone 

application). For any driver 𝑛 ∈ 𝒩, let ℛ𝓃 ⊆ {0,1}|ℰ| denote the set of possible route options 
for going from its origin to its destination. Let ℐ𝓃 be the set of all incentives we can offer to 
driver 𝑛 ∈ 𝒩.  

We also use the binary variable 𝑠𝑖
𝑟,𝑛 ∈ {0,1} to represent the offered incentives. For any driver 

𝑛 ∈ 𝒩 and incentive 𝑖 ∈ ℐ𝓃, the variable 𝑠𝑖
𝑟,𝑛 = 1 if incentive 𝑖 is offered to driver 𝑛 to take 

route 𝑟; and 𝑠𝑖
𝑟,𝑛 = 0 otherwise.  

We will also assume that we incentivize each driver with only one offer for one of their possible 
routes, i.e., ∑ ∑ 𝑠𝑖

𝑟,𝑛
𝑖∈ℐ𝓃𝑟∈ℛ𝓃

= 1. Given any incentive offered to the drivers, we model the 

decision of the drivers stochastically. In particular, we assume after offering incentives, each 
driver 𝑛 chooses route 𝑟 with a certain probability. This probability depends on the amount of 
incentive we offer, the route, and the driver's preferences, as described below. 

The route preferences of drivers depend on different factors such as route travel time, gender, 
age, and particularly the (monetary) incentive provided to the drivers in our context. Such 
dependence can be easily learned using standard machine learning approaches in the presence 
of data. For example, the work [64] models the preferences of the drivers by learning the utility 
of the drivers and fitting the best possible model using real data. In this project, we rely on their 
model for our preference modeling. We simplify their model by ignoring the less predictive 
features and we only consider two major features which are the travel time and amount of 
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incentive. In particular, we assume that, given incentive 𝑖 ∈ ℐ𝓃 to driver 𝑛, the driver chooses 
route 𝑟 with probability  

𝑝𝑖
𝑟,𝑛 = 𝑃𝑛(𝑇𝑟̂ , 𝑖), (1) 

where 𝑇𝒓̂ is the estimate of the travel time for route 𝒓 provided by the incentive offering 
platform. Notice that when drivers make their routing decisions, they do not know the exact 

travel time 𝑇𝒓 for route 𝒓, but instead they rely on the estimate 𝑇𝒓̂ provided by the system. 
Here, we make an underlying assumption that the drivers do not include their own judgement 
about the travel time in their decision. However, if such individual biases for drivers exist, the 
system can learn it over time using standard preference learning techniques.  

In the next subsections, we present our model and formulation in more detail. For the 
convenience of the reader, the list of notations defined here and later in the manuscript is 
presented in the Appendix section “List of Notations”. We have also presented our notation in a 
simple example in the Appendix section “An Example of the Model and Notations” that can 
further illustrate our notation for the reader. We present our framework under two different 
scenarios: First, we study the case where it is possible to bring traffic flow below the network 
capacity (i.e., all the links operate below their capacity). As we will see, this problem leads to a 
mixed integer linear programming (MILP) method which can be solved using standard 
optimization solvers. Then, we study the high demand scenario where there is no feasible 
strategy to bring the demand below the network capacity. In this case, while it is not feasible to 
get rid of network congestion, we aim to optimize a certain utility of the system such as 
reducing the expected carbon footprint of the network given the amount of available budget. 
This scenario will lead to a more challenging optimization problem for which we propose a 
distributed algorithm for solving. 

Scenario I: Operating Below Network Capacity 

Let us first for simplicity assume that there exists a solution that all road segments operate 
below the capacity. Hence, for that solution, we can assume that the travel time of each driver 
will be the free flow traffic. As we will see in this section, our assumption will result in a linear 
programming optimization problem that can be solved efficiently using standard MILP solvers. 
In the next section, we present a formulation which relaxes this assumption. 

As explained in section “Problem Description”, we model the response of the drivers to the 
offered incentives where the acceptance probability follows a Bernoulli random variable with 
the preference probabilities parameter provided in equation (1). Hence, the volume vector vt is 
a stochastic vector which depends on the response of the drivers to the offered incentives. The 
expected value of this random vector is given by 

𝐸 [𝑣𝑡  ] = ∑ ∑ ∑ 𝑠𝑖
𝑟,𝑛𝑝𝑖

𝑟,𝑛β𝑟,𝑡𝑟∈ℛ𝓃𝑖∈ℐ𝓃𝑛∈𝒩 . (2) 

where the vector β𝑟,𝑡 ∈ 𝑅|𝔼| shows the probability of being at different links of the network at 

time 𝑡 ∈ 𝑁 ∖ 0 , conditioned on the fact that driver 𝑛 is on route 𝑟. The time dynamics and the 
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projection of the location of each driver during the time horizon is captured by the vector β𝑟,𝑡. 
For more details about vector β𝑟,𝑡, please refer to [65] and the example provided in the 
Appendix section “An Example of the Model and Notations”.  

Our goal is to minimize the cost of offering incentives while keeping the volume below the road 
segment capacity vector v0. More precisely, 

 

where 𝑞𝑖 is the cost of offering incentive 𝑖. Here, the term “with high probability” is used to 
emphasize the random nature of vector 𝑣𝑡. This constraint can mathematically be translated to 
𝑃(𝑣𝑡 ≤ 𝑣0, ∀𝑡 ∈ 𝑇) ≥ ζ, for some given confidence level ζ. To keep this optimization problem 
tractable, we rely on the assumption of large number of vehicles in each road segment and 
approximate the random quantity 𝑣𝑡 with its average 𝐸[𝑣𝑡] provided in equation (2). More 
precisely, we aim at solving 

 

which is a mixed-integer linear programming model and can be solved with standard 
optimization software packages.  

A natural alternative formulation in this scenario is to minimize a utility of the system subject to 
budget and capacity constraints. For example, we can minimize the expected value of total 
travel time of the drivers subject to budget and capacity constraints 
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where ω ∈ 𝑅|𝔼| is the vector of free flow travel time of the links and Ω is the total available 
budget. Notice that the objective function is equal to 

 

in which ∑ β𝑟,𝑡
⊺

𝑡∈𝑇 ω is the expected travel time of driver 𝑛 on route 𝑟. 

Scenario II: Operating Above Network Capacity 

In this subsection, we study the scenario of operating above network capacity. In other words, 
we assume that the demand is elevated, and thus, there is no incentive offering strategy that 
will bring the traffic flow below the network capacity. In such a scenario, we still can “improve" 
the congestion via providing incentives to individual drivers. Our goal is to optimize a utility of 
the system as a criterion to compare the traffic condition after incentivizing. To make the 
formulation more specific, we use an environmental factor, Carbon emission, as the utility 
function to evaluate the improvement of traffic conditions. It is worth noting that while we use 
this utility in our formulation, following our steps, one can use other utility functions as the 
objective function. 

To model and quantify the amount of emission, resulting from congestion, we rely on the 
ARTEMIS research program [66] that provides emission functions for CO2 (Carbon dioxide), CO 
(Carbon monoxide), HC (Hydrocarbons), PM (Exhaust particulate matter), NOx (Nitrogen Oxides) 
[66]. We use CO2 emissions as our criterion to quantify the adverse impact of congestion on the 
environment because global warming by the late 21st century and beyond is mostly influenced 
by CO2 emissions [67]. In ARTEMIS research project, CO2 emissions are estimated via a 
polynomial function where the parameters and the order of the function depend on the fuel 
type of the engine and the emission standard of the fuel. For example, if the drivers’ vehicles 
have Euro IV petrol engine, we have the following emission function: 

𝑓𝐶𝐸(δ) =  523.7  −  (1654.4  ×  10−2) δ  +  (2635.4  ×  10−4) δ2  −  (1771.5  ×  10−6) δ3 +
 (442.9  ×  10−8) 𝛿4, (5) 
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where δ ∈ R is the average speed in km/h of the link. The output of the function is the emission 
factor in g/km. To compute the total CO2 emissions at the link in grams, we need to multiply the 
emission factor fCE(.) by the length of the link in km, i.e., 

CO2 emission in grams for one vehicle for traveling on a given link = 𝑓𝐶𝐸(δ)𝐿, 

where L is the length of the link in km. Thus, one can estimate the total CO2 emissions by a 
vehicle in this scenario.2 

To compute the total Carbon emission (𝐶𝑂2) of the system, we need to sum up the Carbon 
emissions of all links over all time periods, i.e., 

 

where δℓ,𝑡 is the speed of link ℓ at time 𝑡 (which itself is a function of the volume). Here, 𝑣̂ is 
the vector of the volume of the links at different times in the horizon in which 𝑣̂ℓ,𝑡 is the 
(|ℓ| × 𝑡 + l)𝑡ℎ element of the vector 𝑣̂ representing the volume of the ℓ𝑡ℎ link at time 𝑡, and 𝐿l 

is the length of the ℓ𝑡ℎ link. 

To understand the impact of our offered incentives to the total carbon emissions, we estimate 
the drivers’ decision based on the provided incentives, which in turn results in estimating the 
volume of the links in the horizon of interest. Given these estimated volume values, we 
estimate the speed of the links as described below. 

Speed value δ: The function 𝑓𝐶𝐸(⋅) takes the average speed of the link as the input argument 
but we have access to the volume. There are different functions that capture the relation 
between speed and volume. For example, the link congestion function developed by the 
Bureau of Public Roads (BPR) [68] defines a nonlinear relation between the volume and travel 
time of the road segments: 

𝑓𝐵𝑃𝑅(𝑣) = 𝑡0 (1 + 0.15 (
𝑣

𝑤
)

4

) 

where 𝑓𝐵𝑃𝑅(𝑣) is the travel time of the drivers on the link given the assigned traffic volume 𝑣; 
the parameter 𝑡0 is the free flow travel time of the link; 𝑣 is the assigned traffic volume of the 
link; and 𝑤 is the practical capacity of the link. We learn 𝑡0 and 𝑤 by using gradient descent and 
historical traffic data. We can compute the speed by rewriting the BPR function as: 

 

 

2 Although we assume Euro IV petrol engine for all cars in the network here, one can personalize this to any 
individual vehicle and use the specific vehicle properties to compute the carbon emission. In other words, we can 
have a customized function for each car/driver in our model. 
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So we can rewrite the function in (6) based on the speed function δ(·) as: 

 

Thus, in order to estimate the Carbon emissions of the system, we need to estimate the volume 
vector 𝑣̂, which we discuss next. 

Volume vector 𝑣̂: To compute the volume vector, we need to know the routing decision of the 
drivers to be able to (approximately) estimate their location at different times. Clearly, the 
drivers' decision is a function of the offered incentives. In other words, the location of a driver is 
dependent on the incentive that we assign to them, because the likelihood of various decisions 
changes with different incentives. Let us first explain our notation for the offered incentives: 
For each driver, we have a one hot encoded vector describing which route has been 
incentivized and how much reward has been assigned to it. Thus, for each driver we have a 

binary vector 𝑠 ∈ {0,1}|ℛ|⋅|ℐ| in which only one element has a value of one and it corresponds to 
the route and the incentive amount that we offer. As we need one vector for each driver, we 

can aggregate all our incentivization strategy in a matrix 𝑺 ∈ {0,1}(|ℛ|⋅|ℐ|)×|𝒩|. Naturally, routes 
that are not relevant to that OD pair of a driver will get a value of zero in the corresponding 
incentive vector (since we cannot offer those routes to the driver). 

Using the above definition, the product 𝐒𝟏 is a (|ℛ| ⋅ |ℐ|) ×  1 vector where (𝐒𝟏)𝑟𝑖 represents 
the number of drivers receiving incentive 𝑖 for choosing route 𝑟. To understand the drivers' 
responses to our offered incentives, we need to estimate the probability of acceptance of 
incentivized routes under different incentives including zero incentive (i.e, no incentive). To 
model this probability, we use the utility function provided in [64] and compute the probability 
of acceptance of each offered incentive (by using a Softmax function on top of the utility). 
While the model in [64] takes many parameters (such as gender, age, length of the route, 
education of the driver) as input, in our model and numerical experiments we only consider the 
travel time and the reward value to generate the probability of acceptance of a given 

incentive/reward3. Let 𝑷 ∈ [0,1]|ℛ|×(|ℛ|⋅|ℐ|) be a matrix encoding the information of probability 
of picking different routes given the offered (route,incentive) pairs. Thus, the vector 𝐏𝐒𝟏 ∈

𝑅|ℝ|×𝟙 shows the expected number of vehicles in each route. 

Given the number of vehicles in each route, the position of each driver for the next time 
horizon can be modeled in a probabilistic fashion. In other words, one can model/compute the 
probability of the presence of a vehicle in different road segments in the next time horizon. For 
this purpose, we rely on the model developed in [65] where a specific matrix 𝐑 ∈

 

3 Clearly, one can make the model more accurate and personalized by including parameters such as the gender, 
age, and education of any individual driver. 
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[0,1](|ℰ|⋅|𝑇|)×|ℛ| is proposed to estimate the probability of the presence of a driver in a given 
road segment at a specific time in the future (assuming that the driver is picking a specific 
route). Thus, the vector 

𝑣̂  =  𝑹𝑷𝑺𝟏 ∈ ℝ(|ℰ|⋅|𝑇|)×1  

represents the expected number of vehicles in all the links at each time slot. Plugging in the 
above volume vector in the function in (7), we get: 

 

where 𝑎l,𝑡 is the row of matrix 𝐀 = 𝐑𝐏 which corresponds to link l at time 𝑡. Thus, in order to 
minimize the total Carbon emission in the system via providing incentives to drivers, we need to 
solve the following optimization problem:  

 

where 𝐜 ∈ 𝑅+
|ℝ|⋅|𝕀|

 is the vector of cost of incentives assigned to each route, 𝐃 ∈ {0,1}𝐾×(𝑘|ℐ|) is 

the matrix of incentive assignments to the OD pairs, and 𝐪 ∈ 𝑅𝐾×|ℐ|  is the vector of the number 
of drivers for each OD pair. Here, 𝐾 is the number of OD pairs. In what follows, we explain the 
constraints in more details: 

Constraint 1 (𝑺⊺1 = 𝟏): This constraint simply states that we only assign one incentive to each 
driver. 

Constraint 2 (𝒄⊺ 𝑺 𝟏 ≤ 𝛀): This is our budget constraint. We need a vector 𝐜 ∈ 𝑅|ℝ|⋅|𝕀| that 
represents the cost of the different rewards assigned to each driver. Hence, given a matrix 𝐒, 
the total cost of incentive strategy 𝐒 can be computed as 𝒄⊺𝑺𝟏. 

Constraint 3 (𝐃𝐒𝟏 = 𝒒): This constraint makes the model aware of the number of drivers that 
are traveling between each OD pair to make sure that we offer the correct number of rewards 
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for the routes between each OD pair. Recall that 𝐒𝟏 represents the (expected) number of 
drivers that have been offered different routes given different rewards. We use matrix 𝐃 to 
sum up the number of drivers that have received the different reward offers for the routes 
between the same OD pair so we get the vector of the number of drivers that are traveling 
between each OD pair. 𝐪 is the vector of the actual number of drivers that are travelling 
between OD pairs and 𝐃𝐒𝟏 should be equal to 𝐪. 

Constraint 4 (𝐒 ∈ {0,1}(|ℛ||ℐ|)×|𝒩|): This constraint imposes binary structure on our decision 

parameters. In other words, 0 is not choosing an incentive and 1 is selecting the incentive as 
explained before.  

To better understand our model, we provide an example in Appendix “An Example of the 
Model and Notations”. 

Algorithm for Offering Incentives and A Distributed Implementation 

Optimization problem (8) is of large size while it needs to be solved in real time in the network. 
However, due to the existence of binary variable 𝐒, solving this problem efficiently is difficult4. 
In order to develop an efficient solver for (8), we first relax the binary constraint in (8) and 

replace it with the relaxed convex constraint 𝐒 ∈ [0,1](|ℛ||ℐ|)×|𝒩|, leading to the relaxed 
formulation: 

 

The constraints in the above optimization problem are clearly convex. However, as we show in 
Appendix “Convexity of the CO2 Emission Function”, the objective function is not necessarily 
convex in general. Luckily, as we demonstrate in Appendix “Convexity of the CO2 Emission 
Function” the above problem is convex for a wide range of problem instances and in particular 
for the setting of our numerical experiments. This convexity will allow us to explore the use of 
standard solvers such as CVX [69], a package for specifying and solving convex programs. 
However, these solvers rely on methods such as interior point methods [70] which requires 
𝑂(𝑛3) number of iterations with 𝑛 being the number of variables. This heavy computational 
complexity prevents us from applying standard solvers. However, in our context, each driver is 
equipped with a smartphone, and thus, we can distribute the computational burden of solving 

 

4 We conjecture that problem (8) is NP-hard to solve since it is a special instance of polynomial optimization with 
discrete variables and there seems to be no special structure in function 𝑓 to reduce its complexity. 
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(9) among the drivers. In what follows, we propose a simple reformulation of the problem 
leading to a distributed algorithm for solving (9).  

To present our algorithm, let us start by reformulating (9) as 

 

As we discuss in Appendix “Details of Alternating Direction Method of Multipliers (ADMM)”, 
this formulation is amenable to the ADMM method [[71]–[74]], which has a natural distributed 
implementation. Thus, we rely on the ADMM algorithm for solving (9). The steps of this 
algorithm are summarized in Algorithm 1 below and the details of the derivation of its steps is 
provided in Appendix “Details of Alternating Direction Method of Multipliers (ADMM)”. 

In Algorithm 1, Π(⋅)[0,1] is the operator that projects each entry of the input matrix to the 

interval [0,1]. Notice that in Algorithm 1, Steps 4, 5, and 7 are computationally cumbersome 
due to the size of matrices 𝐖, 𝐒, and 𝐇. However, notice that each column of the matrices 𝐖, 𝐒, 
and 𝐇 corresponds to a single driver and hence the computation corresponding to each column 
can be performed in parallel on the smartphone devices of the drivers. Moreover, in Step 7 of 
Algorithm 1, we need to solve 𝐿 × 𝑇 single dimensional optimization problems (which we can 
rely on methods such as bisection or Newton to solve). Moreover, since these optimization 
problems are not coupled, they can be solved in parallel on the driver's smart devices. Theorem 
1 guarantees the convergence of our ADMM algorithm. 

Theorem 1 Let FCE(.) be as defined in (5). Then, Algorithm 1 finds an E-optimal solution of 
problem (9) in O(1/E) iterations. 

While Algorithm 1 returns the solution of the optimization problem (9), this problem is a 
relaxation of the original problem (8). Hence, the obtained solution in Algorithm 1 must be 
“rounded” to a feasible point in (8). For this step, we use the Quantized-Alternating Direction 
Method of Multipliers (ADMM-Q), which has been tremendously successful in recent years for 
training binarized neural networks [[75]–[84]] and has been shown to converge to a 
“stationary” notion of the original problem in [85]. The details of this rounding process is 
presented in Appendix “Details of Alternating Direction Method of Multipliers (ADMM)”. 
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Numerical Experiments 

We evaluate the performance of our method using data from the Los Angeles area. The Los 
Angeles region is ideally suited for being the validation area because for various OD pairs, there 
are a number of routes that connect them. Additionally, researchers at the University of 
Southern California have developed the Archived Data Management System (ADMS) that 
collects, archives, and integrates a variety of transportation datasets from Los Angeles, Orange, 
San Bernardino, Riverside, and Ventura Counties. ADMS includes access to real-time traffic 
datasets from 9500 highway and arterial loop detectors providing data approximately every 1 
minute.  

Due to a lack of access to all the drivers’ routing information, we need to estimate the origin-
destination (OD) matrix from the network flow information. Rows and columns of the OD 
matrix correspond to the origin and destination points respectively. For instance, for OD matrix 
A, the element A(i,j) is the number of drivers going from point i to point j. The fundamental 
challenge of the OD matrix estimation problem is that it is severely under-determined [[86]–
[88]]. There are two categories of OD matrices; static and dynamic OD matrix and both have 
been studied extensively (see the review article [89], and the references therein). In static 
methods, the traffic flows are considered as time-independent and an average OD demand is 
determined for long-term transportation planning and design purposes [89]. Dynamic OD 
demand represents the number of travelers departing from an origin at a particular time 
interval heading for a destination [65]. Due to the high resolution of our data, most of the 
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existing dynamic OD estimation (DODE) methods become computationally inefficient. In 
addition, we do not have prior data of the OD matrix which many studies consider as given data 
[[90]–[93]] and we do not have access to prior observations of the OD matrix. Given these 
barriers, we use the algorithm proposed by [65] which can handle the high-resolution data to 
carry out the DODE without employing any prior OD matrix information as a ground-truth. 

We use CO2 emission as one criterion to evaluate the performance of our incentive offering 
mechanism. We compare the performance of incentive offering mechanism to the “baseline” 
mechanism where no rewards are offered to the drivers. 

We make the following two assumptions about the vehicles in the traffic. 

• Drivers’ vehicles have Petrol engine. 

• The provided Petrol is Euro IV. 

Based on these two assumptions, we have the following emission function: 

𝑓𝐶𝐸(δ) =  523.7  −  (1654.4  ×  10−2) δ  +  (2635.4  ×  10−4) δ2  −  (1771.5  ×  10−6) δ3

+  (442.9  ×  10−8) 𝛿4 

where δ ∈ R is the average speed in km/h at the link. 

Simulation Model 

In our numerical experiments, we integrate different data sets and models to simulate our 
provided optimization models. First, we extract the speed data, volume data, and sensor 
information including the location of sensors from the Archived Data Management System 
(ADMS). ADMS collects, archives, and integrates a variety of transportation datasets, and it 
includes real-time traffic data (such as speed and volume) of arterial ways for every 1 minute. 
We also use distance of sensors which is extracted from the location of sensors by using Google 
Maps API. Using this distance data, we create the graph of the network. We created two sets of 
graph networks for the University of Southern California (USC) neighborhood data with two 
different sets of OD points which are depicted in Figure 1 and Figure 3. In the next step, the 
speed data, volume data, and the network graph are used for estimating OD pairs by the 
algorithm provided in [65]. The total number of estimated incoming drivers are presented in 
Figure 2 and Figure 4. For each OD pair, we find up to four different routing options. In 
particular, we start by the shortest path for each OD pair. Then, we remove the edges in this 
path and go with the second shortest path, and we continue this process until we find 4 
different routes between the origin and destination (or no other routes exist). We use the 
model in [64] to compute the probability of accepting different offers on the different routes 
for each individual driver. This model is based on a utility function that considers the travel time 
of the path and the value of the offered incentive to predict the probability of its acceptance. 
Notice that this model is “personalized” since different individuals respond differently to the 
same incentive. In particular, features such as gender, salary, or level of education can influence 
the individual’s response to the offered incentive [64]. Thus, this model includes individual 
features such as the salary and education of the drivers to model their behavior. In our 
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numerical experiments, however, due to lack of data about each individual’s features, we only 
consider the travel time of the path and the value of the offered incentive. Moreover, in our 
experiments, we assume that we have access to all the drivers that are currently in the system 
and we can offer an incentive to each individual one. If we have access to a portion of drivers, 
we can simply consider a zero value of incentive in our utility function and compute the 
probability of different paths based on their total travel time.  

Experiment I 

In Experiment I, we check the performance of models (3) and (4) using the ADMS data for May, 
5𝑡ℎ of 2018 with the incentive set ℐ = {$0, $1, $2, $5, $10, $1000}. The region considered in 
our analysis is depicted in Figure 1. This region includes the data of 301 sensors. Based on the 
ADMS data, we created a graph with 41 nodes and 139 links. OD points are located on 
intersections and close to the ramp of the highways. The number of OD pairs is 1681 and there 
are 4286 paths between them in total. The estimated total number of drivers incoming to the 
system between 5 AM to 9 AM by the OD estimation algorithm is depicted in Figure 2. Results 
of model (3) are presented in Table 1, Table 2, and Table 3; and the results of model (4) are 
presented in Tables 4, 5, and 6. 

 

Figure 1. Region set  
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Figure 2. Total estimated number of drivers entering the system (in 15-minute intervals) 

Notice that these models may result in infeasible optimization problems. Hence, we included a 
parameter α in our formulation as the multiplier of the allowed capacity. For instance, α = 2.0 
means that the optimization model tries to keep all traffic flows beyond twice the nominal 
capacity of the links. We only consider this multiplier during the computation of incentives; 
however, during the computation of Carbon emission and total travel time we use the original 
capacity. In this experiment, we use Google services to compute distances between various 
nodes, we also pick the route with highest probability for each driver when no incentive is 
offered (i.e., we assumed zero incentive in our probabilistic model for such drivers). To 
compute the Carbon emission, we need the expected total travel time based on the expected 
volume of the links after incentive assignments which is presented as total travel time in the 
tables below. The “CO2 decrease” column is the percentage of decrease of Carbon emission 
compared to the scenario where no incentive is provided.  

Table 1. Experiment I for model (3), traffic of 6-7 AM 

Time: 6-7 AM 

α parameter Cost ($) CO2 (g×106) CO2 decrease Total travel time 
(hour) 

α = 1.5 Infeasible 
α = 2.0 306 2.874 0.24% 420.22 

Table 2. Experiment I for model (3), traffic of 7-8 AM 

Time: 7-8 AM 

α parameter Cost ($) CO2 (g×106) CO2 decrease Total travel time (hour) 

α = 1.5 Infeasible 

α = 2.0 952 4.578 0.82% 720.18 
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Table 3. Experiment I for model (3), traffic of 8-9 AM 

Time: 8-9 AM 

α parameter Cost ($) CO2 (g×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 

α = 1.5 4512 3.781 4.59% 538.18 
α = 2.0 422 3.925 0.96% 593.11 

As can be seen in Tables 1, 2, and 3, the optimal choice of 𝛼 is not clear before tuning and it 
requires a line search to identify it. Due to the high traffic volume between 6 AM and 9 AM 
(rush hours), traffic is beyond the capacity of the roads so with the original capacity of the road 
(𝛼 = 1.0) or even higher capacity (𝛼 = 1.5), we cannot satisfy the demand in all the road 
segments. Hence, in model (3), we need to find out the reasonable capacity (by tuning 𝛼) in 
which we do not have infeasibility.  

Table 4. Experiment I for model (4), traffic of 6-7 AM 

 Time: 6-7 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.35 

CO2 (g ×106) 2.881 2.863 2.741 2.366 2.311 

CO2 decrease 0% 0.62% 4.86% 17.88% 19.78% 

Total travel time (hour) 431.37 428.97 410.01 365.36 371.37 

Table 5. Experiment I for model (4), traffic of 7-8 AM 

 Time: 7-8 AM 

Budget ($ × 103) 
0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.955 

CO2 (g ×106) 4.616 4.593 4.416 3.795 3.659 

CO2 decrease 0% 0.5% 4.33% 17.79% 20.73% 

Total travel time (hour) 769.32 764.55 721.66 615.78 633.13 

Table 6. Experiment I for model (4), traffic of 8-9 AM 

 Time: 8-9 AM 

Budget ($ × 103) 
0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.138 

CO2 (g ×106) 3.963 3.939 3.783 3.222 3.134 

CO2 decrease 0% 0.61% 4.54% 18.70% 20.92% 

Total travel time (hour) 615.60 610.86 582.12 492.95 507.13 
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As can be seen in the above tables, when the available budget increases, the central planner 
can reduce congestion further, which in turn results in lower CO2 emissions and a decreased 
total travel time. Moreover, we observe that there is a diminishing return when we increase the 
budget. For example, in Table 5 and Table 6, when the budget is increased from $1000 to 
$10,000, the CO2 emission decrease is improved by almost a factor of 4. However, increasing 
the budget further to $100,000 will only slightly improve the total CO2 emissions of the system.  

Experiment II 

In Experiment II, we evaluate the performance of our methods in a slightly different setting. In 
this setting, the incentive set is {$0, $2, $10}. The region under analysis is similar to the region 
in Experiment I, which is depicted in Figure 2. But in this region, we decreased the number of 
OD points to 17 to shrink the size of the data. The number of OD pairs becomes 289 and there 
are 672 paths between them in total. The estimated total number of drivers incoming to the 
system between 5 AM to 9 AM by the OD estimation algorithm is depicted in Figure 4. 

 

Figure 3. Region set II 
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Figure 4. Total estimated number of drivers entering the system (in 15-minute intervals) 

Table 7. Experiment II for model (3), traffic of 6-7 AM 

Time: 6-7 AM 
α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 2.0 Infeasible 

Table 8. Experiment II for model (3), traffic of 7-8 AM 

Time: 7-8 AM 
α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 2.0 Infeasible 

Table 9. Experiment II for model (3), traffic of 8-9 AM 

Time: 8-9 AM 

α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 2.0 Infeasible 

Table 10. Experiment II for model (4), traffic of 6-7 AM 

 Time: 6-7 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 31.428 

CO2 (g ×106) 2.544 2.524 2.429 2.242 2.242 

CO2 decrease 0% 0.79% 4.52% 11.87% 11.87% 

Total travel time (hour) 386.39 383.47 375.39 433.09 513.99 
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Table 11. Experiment II for model (4), traffic of 7-8 AM 

 Time: 7-8 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 44.536 

CO2 (g ×106) 4.073 4.054 3.921 3.729 3.818 

CO2 decrease 0% 0.47% 3.73% 8.45% 6.26% 

Total travel time (hour) 707.38 704.69 681.99 967.51 1281.26 

Table 12. Experiment II for model (4), traffic of 8-9 AM 

 Time: 8-9 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 39.302 

CO2 (g ×106) 3.562 3.540 3.415 3.199 3.272 

CO2 decrease 0% 0.62% 4.13% 10.19% 14% 

Total travel time (hour) 561.21 557.73 535.15 665.68 935.47 

Again, we observe that increasing the budget will result in lower traffic volumes, lower CO2 
emissions, and shorter total travel time. We also observe the diminishing return phenomenon 
when increasing the budget, as described before.  

Experiment III 

In Experiment III, we evaluate the performance of our methods in a similar setting as 
Experiment I but for a different region. This region includes the highways of a portion of Los 
Angeles county depicted in Figure 5. There are 25 OD points in this region with 625 OD pairs, 
resulting in 1331 paths between them in total. The estimated number of drivers entering the 
system between 5 AM to 9 AM is depicted in Figure 6. 
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Figure 5. Studied region for experiment III 

 

Figure 6. Estimated number of drivers entering the system 
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Table 13. Experiment III for model (3), traffic of 6-7 AM 

Time: 6-7 AM 

α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 
α = 1.5 6866 57.390 3.73% 4324.12 

α = 2.0 2591 58.355 2.11% 4449.03 

Table 14. Experiment III for model (3), traffic of 7-8 AM 

Time: 7-8 AM 

α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 
α = 1.5 5450 53.748 4.07% 3932.50 

α = 2.0 2308 54.508 2.71% 4035.53 

Table 15. Experiment III for model (3), traffic of 8-9 AM 

Time: 8-9 AM 

α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 
α = 1.5 3936 48.64 4.04% 3406.33 

α = 2.0 1715 49.387 2.56% 3527.92 

Table 16. Experiment III for model (4), traffic of 6-7 AM 

 Time: 6-7 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.11 

CO2 (g ×106) 59.615 59.567 59.366 56.928 56.087 

CO2 decrease 0% 0.08% 0.42% 4.51% 5.92% 

Total travel time (hour) 5412.54 5403.76 5376.96 4640.98 5009.11 

Table 17. Experiment III for model (4), traffic of 7-8 AM 

 Time: 7-8 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.33 

CO2 (g ×106) 56.028 55.982 55.625 52.836 51.738 

CO2 decrease 0% 0.08% 0.72% 5.70% 7.66% 

Total travel time (hour) 4834.51 4817.06 4737.40 4078.53 4737.25 
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Table 18. Experiment III for model (4), traffic of 8-9 AM 

 Time: 8-9 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.681 

CO2 (g ×106) 50.686 50.65 50.276 47.533 46.105 

CO2 decrease 0% 0.07% 0.81% 6.22% 9.04% 

Total travel time (hour) 4087.44 4078.89 4019.53 3482.51 4172.35 

Experiment IV 

In Experiment IV, we evaluate the performance of our methods in a similar setting as 
Experiment II with the region being similar to the region in Experiment III. 

Table 19. Experiment III for model (3), traffic of 6-7 AM 

Time: 6-7 AM 
α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 

α = 1.5 6866 57.390 3.73% 4324.12 
α = 2.0 2591 58.355 2.11% 4449.03 

Table 20. Experiment III for model (3), traffic of 7-8 AM 

Time: 7-8 AM 

α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 

α = 1.5 5450 53.748 4.07% 3932.50 
α = 2.0 2308 54.508 2.71% 4035.53 

Table 21. Experiment III for model (3), traffic of 8-9 AM 

Time: 8-9 AM 
α parameter Cost ($) CO2 (g ×106) CO2 decrease Total travel time (hour) 

α = 1.0 Infeasible 

α = 1.5 3936 48.64 4.04% 3406.33 

α = 2.0 1715 49.387 2.56% 3527.92 



 26 

Table 22. Experiment III for model (4), traffic of 6-7 AM 

 Time: 6-7 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.11 

CO2 (g ×106) 59.615 59.567 59.366 56.928 56.087 

CO2 decrease 0% 0.08% 0.42% 4.51% 5.92% 

Total travel time (hour) 5412.54 5403.76 5376.96 4640.98 5009.11 

Table 23. Experiment III for model (4), traffic of 7-8 AM 

 Time: 7-8 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.33 

CO2 (g ×106) 56.028 55.982 55.625 52.836 51.738 

CO2 decrease 0% 0.08% 0.72% 5.70% 7.66% 

Total travel time (hour) 4834.51 4817.06 4737.40 4078.53 4737.25 

Table 24. Experiment III for model (4), traffic of 8-9 AM 

 Time: 8-9 AM 

Budget ($ × 103) 

0 0.1 1 10 100 

Cost ($ × 103) 0 100 1 10 99.681 

CO2 (g ×106) 50.686 50.65 50.276 47.533 46.105 

CO2 decrease 0% 0.07% 0.81% 6.22% 9.04% 

Total travel time (hour) 4087.44 4078.89 4019.53 3482.51 4172.35 

Table 25 summarizes the result of experiments I and II and Table 26 summarizes the results of 
experiments III and IV for 7-9 AM (which can be considered as rush hour times in Los Angeles). 
We observe that increasing the budget results in higher average amount of offered incentives, 
higher percentage of drivers to whom we offered the incentive, and higher reduction in Carbon 
emissions. The improvement in the reduction of Carbon emissions is by a factor of almost 4 and 
2 in experiments I and II respectively when the budget is increased. Also, the improvement in 
the reduction of carbon emissions is by a factor of almost 8 in experiments III and IV when the 
budget is increased. For more details about the distribution of offered incentives to the drivers 
at 7-8 AM and 8-9 AM in experiments I, II, III, and IV, please see Table 30–Table 37 in the 
Appendix.  
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Table 25. Comparison of $1k and $10k budget for 7-8 AM and 8-9 AM in experiment I and II 

 

Number of 
drivers 

entering the 
system 

Budget 
($ × 103) 

Percentage of 
drivers to whom we 

offered incentive 

Average of 
the incentive 

amount 

Reduction in 
Carbon 

Emission 

7-8 AM 
Exp. I 

7402 
1 8.94% 1.51 4.33% 

10 43.12% 3.13 17.79% 

8-9 AM 
Exp. I 

6380 
1 9.86% 1.59 4.54% 

10 47.46% 3.30 18.70% 

7-8 AM 
Exp. II 

4856 
1 10.30% 2 3.73% 

10 79.08% 2.60 8.45% 

8-9 AM 
Exp. II 

4308 
1 11.61% 2 4.13% 

10 79.67% 2.91 10.19% 

In addition, Table 25 shows that even offering incentives to 9% of the vehicles (with the average 
of $1.5 monetary incentive per driver) can reduce the CO2 emissions by 4%. If approximately 
45% of the drivers are incentivized with the average of $2-$3 per driver, the CO2 emissions can 
reduce by more than 20%. Moreover, we observe a diversity gain in Experiment I compared to 
Experiment II. More precisely, in Experiment I where the number of possible ODs is larger, we 
obtain further improvement in congestion reduction by increasing the monetary budget.  

Table 26. Comparison of $1k and $10k budget for 7-8 AM and 8-9 AM in experiment I and II. 

 
Number of 

drivers entering 
the system 

Budget 
($ × 103) 

Percentage of 
drivers to whom we 

offered incentive 

Average of 
the incentive 

amount 

Reduction in 
Carbon 

Emission 

7-8 AM 
Exp. III 

15096 
1 3.78% 1.75 0.72% 

10 21.91% 3.02 5.70% 

8-9 AM 
Exp. III 

13463 
1 2.91% 2.55 0.81% 

10 23.35% 3.18 6.22% 

7-8 AM 
Exp. IV 

15096 
1 2.99% 2.21 0.69% 

10 21.30% 3.11 5.33% 

8-9 AM 
Exp. IV 

13463 
1 2.93% 2.53 0.46% 

10 21.15% 3.51 5.56% 
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Table 26 shows that offering incentives to 1.75% of the vehicles in the large portion of Los 
Angeles county (with the average of $1.75 monetary incentive per driver) can reduce the CO2 
emissions by 0.72%. If approximately 21.91% of the drivers are incentivized with the average of 
$3 per driver, the CO2 emissions can reduce by more than 5%. Although the percentage of 
reduction in Experiment III and IV is smaller than Experiment I and II, we should consider that 
Experiment III and IV includes much larger area than Experiment I and II and the scale of Carbon 
reduction is different. Furthermore, we observe a diversity gain in Experiment III compared to 
Experiment IV which was observed in Experiment III and IV as well. For more details about the 
distribution of offered incentives to drivers at 7-8 AM and 8-9 AM in experiment I, please see 
Table 30–Table 37 in the Appendix. 

Conclusion 

In this project, we developed mathematical models and proposed algorithms for offering 
personalized incentives to drivers to reduce congestion in the network. In this framework, 
drivers share their origin-destination and routing information with a central planner. Based on 
this information, the central planner then offers incentives to drivers to incentivize/enforce a 
socially optimal routing strategy. The incentives are offered based on solving a large-scale 
optimization problem in our framework. In our framework, we bring together prior works to 
model the behavior of drivers in response to the offered incentives as well as the resulting 
congestion reduction in the network. We consider different formulations such as optimizing a 
utility of traffic flows subject to budget constraints; or minimizing the cost of offering incentives 
subject to traffic flow constraints. We also pay special attention to minimizing the carbon 
emission of the network and show that this problem leads to a convex optimization problem in 
our data. In addition, we showed that this problem can be solved in a distributed fashion where 
some of the computations are performed on individual drivers’ smart devices. Finally, we 
evaluated the performance of some of our models and algorithms using the Archived Data 
Management System (ADMS) data. Our experiments show that the proposed framework can 
lead up to 27% decrease in the total carbon emission of the system during rush hour times. 

In this work, the incentives are only offered to alter the routing decision of the drivers. As 
future work, it is crucial to look at the effect of offering incentives to change the mode or time 
of the drivers’ trips. These options will bring additional flexibility to the model, which in turn 
will result in further congestion reduction. 
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Data Management 

Products of Research  

Research products of this work will be submitted in peer-reviewed journal articles, book 
chapters and/or conference proceedings targeted towards the transportation science research 
community. All the resulting code for offering incentives are available through the Dryad data 
repository (https://doi.org/10.5061/dryad.ncjsxkst8). In addition, the codes will be shared on 
the PI’s repository (https://github.com/optimization-for-data-driven-science). Our goal is to 
make the use of our algorithm and its implementation convenient to the transportation science 
research community.  

Data Format and Content  

First, we imported the raw data from the ADMS. Next, we preprocessed the data based on our 
criteria such the type of sensors, time interval of data, and region. Also, we extract the graph of 
the network on Networkx. Finally, we use the data for OD estimation and to solve our 
optimization model. 

Our codes are in Python 2 and 3. Nine Python files have been produced in this project: 

1. All_in_one1.py: This file generates two sets of files. It gets the preprocessed speed and 
volume data in CSV format and its output is pickled Pandas DataFrame format of both 
preprocessed data sets in separated files. Also, it gets the location data of sensors and 
computes the distance of sensors. Next, it creates the graph network by Networkx 
package and saves the file in pickled format. All the processes are in Python3 format. 
Running this code needs API key for Google Maps because we use Google service to find 
the distances. 

2. All_in_one2.py: Inputs and outputs are same as All_in_one1.py but in Python2 format. 

3. base.py: It includes functions that are used as tools in other Python files. For example, 
Path class is defined in this file. 

4. data_loader.py: It consists of functions related to loading and saving data and their 
format. 

5. address.py: It includes functions that create the address of output files. 

6. link_capacity.py: This file generates the free flow travel time, free flow speed, and the 
capacity of links based on the BPR function by using Gradient Descent Method from 
PyTorch package. It also generates a CSV file including the distance of links with their ID. 
The input files are the speed data, volume data, and the graph of the network. This code 
is compatible with Python 3. 

7. OptModel_linear1.py: The inputs are a YAML configuration file, graph of the network, 
free flow speed of links, capacity of links, free flow travel time of the links, distance of 
links, OD estimation, decision probability matrices, and the matrix of location of drivers. 

https://doi.org/10.5061/dryad.ncjsxkst8
https://github.com/optimization-for-data-driven-science
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The output is the optimized objective value of model (3) and total travel time and 
Carbon emission. This code should be run Python 3. 

8. OptModel_linear2.py: The inputs are a YAML configuration file, graph of the network, 
free flow speed of links, capacity of links, free flow travel time of the links, distance of 
links, OD estimation, decision probability matrices, and the matrix of location of drivers. 
The output is the optimized objective value of model (4) and total travel time and 
Carbon emission. This code should be run Python 3. 

9. run.py: The inputs are a YAML configuration file, graph of the network, speed of links, 
and volume of the links. The outputs are OD estimation, a matrix of travel time of each 
link, decision probability matrices, and the matrix of location of drivers. This code should 
be run on Linux and Python 2. 

Here, we have provided a description of our data sets and we can share a sample of our run 
upon a reasonable request. 

• YAML files are configuration files for each setting of optimization and OD estimation. 

• congestion_inventory(original).csv: the information of sensors 

• Mar2May_2018_new_5-22_link_capacity_region_x4_modified.csv: capacity of links in 
CSV format 

• Mar2May_2018_new_5-22_link_capacity_region_x4_modified.pickle: capacity of links 
in pickle format 

• Mar2May_2018_new_5-22_link_s_0_region_x4_modified.csv: free flow speed of links in 
mile per hour in CSV format 

• Mar2May_2018_new_5-22_link_s_0_region_x4_modified.pickle: free flow speed of 
links mile per hour in pickle format 

• Mar2May_2018_new_5-22_link_tt_0_hours_region_x4_modified.csv: free flow travel 
time of links in hour in CSV format 

• Mar2May_2018_new_5-22_link_tt_0_hours_region_x4_modified.pickle: free flow travel 
time of links in hour in pickle format 

• Mar2May_2018_new_5-22_link_tt_0_minutes_region_x4_modified.csv: free flow travel 
time of links in minutes in CSV format 

• Mar2May_2018_new_5-22_link_tt_0_minutes_region_x4_modified. pickle: free flow 
travel time of links in minutes in pickle format 

• Mar2May_2018_new_5-22_path_tt_minutes_region_x4_modified.pickle: free flow 
travel time of paths in minutes in pickle format 

• Mar2May_2018_new_5-22_sensor_capacity_region_x4_modified.csv: capacity of 
sensors in CSV format 
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• Mar2May_2018_new_5-22_sensor_capacity_region_x4_modified.pickle: capacity of 
sensors in pickle format 

• Mar2May_2018_new_5-22_sensor_s_0_region_x4_modified.csv: free flow speed of 
links in mile per hour in CSV format 

• Mar2May_2018_new_5-22_sensor_s_0_region_x4_modified.pickle: free flow speed of 
links in mile per hour in pickle format 

• AdjMatrix_region_x4_modified_original.csv: adjacency matrix of the network in CSV 
format 

• link_length_meter_region_x4_modified_original.csv: length of the links in meter in CSV 
format 

• link_length_meter_region_x4_modified_original.pickle: length of the links in meter in 
pickle format 

• link_length_mile_region_x4_modified_original.csv: length of the links in mile in CSV 
format 

• link_length_mile_region_x4_modified_original.pickle: length of the links in mile in pickle 
format 

• my_graph_region_x4_modified_original.gpickle: graph of the network in pickle format 

• my_ID_region_x4_modified_original.csv: ID of links in CSV format 

• my_ID_region_x4_modified_original.pickle: ID of links in pickle format 

• my_od_list_region_x4_modified_original.pickle: list of OD points of Experiment I in 

pickle format 

• my_od_list_region_x4_modified_original_sub1.pickle: list of OD points of Experiment I 
in pickle format 

• unique_sensors_region_x4_modified_original.pickle: list of sensors in pickle format 

• AdjMatrix_region_x4_modified_original_Distance.csv: distance of links in miles in CSV 
format 

• AdjMatrix_region_x4_modified_original_Distance. pickle: distance of links in miles in 
pickle format 

• my_od_list_region_x4_modified_original_sub1.pickle: OD pairs of Experiment II in pickle 
format 

• OD_list_region_x4_original_sub1.csv: list of OD points of Experiment II in CSV format 

• 2018_Feb2Nov_location_table.csv: location of sensors in CSV format 

• my_link_avg_count_data_AVG15min_5-10_region_x4_modified_pad.pickle: volume of 
links for 15 minutes intervals from 5 AM to 10 PM of March, April, May of 2018 in pickle 
format 



 39 

• my_link_avg_spd_data_AVG15min_5-10_region_x4_modified_pad.pickle: speed of links 
for 15 minutes intervals from 5 AM to 10 PM of March, April, May of 2018 in pickle 
format 

• sorted_IDs_Mar2May_2018_new_5-10_region_x4_modified_pad.csv: list of ID of 
sensors in CSV format 

• speed_Mar2May_2018_new_5-10_region_x4_modified_pad.CSV: speed of sensors for 5 
minutes intervals from 5 AM to 10 PM of March, April, May of 2018 in CSV format 

• volume_Mar2May_2018_new_5-10_region_x4_modified_pad.csv: volume of sensors 
for 5 minutes intervals from 5 AM to 10 PM of March, April, May of 2018 in CSV format 

• Outputs of OD estimation are saved in P_matrix_opt, Q_vector, R_matrix, tt, X_vector, 
and observe_index_N files. P_matrix_opt includes the decision probability matrices. 
Q_vector contains OD estimations. R_matrix includes the matrices of probability of 
location of drivers. X_vector includes lists of observed links from the network. 
Observe_index_N has index files of each link for running OD estimation. 

Data Access and Sharing  

The codes are free to share and open to the public. In particular, the codes are available via the 
Dryad data repository (https://doi.org/10.5061/dryad.ncjsxkst8). Moreover, the code are 
available on the GitHub repository of the PI (https://github.com/optimization-for-data-driven-
science).  

As input to our codes, we used Archived Data Management System (ADMS) that collects, 
archives, and integrates a variety of transportation datasets from Los Angeles, Orange, San 
Bernardino, Riverside, and Ventura Counties. ADMS includes access to real-time traffic datasets 
from i) 9500 highway and arterial loop detectors providing data approximately every 1 minute, 
and ii) 2500 bus and train GPS location (AVL) data operating throughout Los Angeles County. 
We can share a sample of our run upon a reasonable request. 

Reuse and Redistribution  

USC’s policy is to encourage, wherever appropriate, research data to be shared with the general 
public through internet access. This public access will be regulated by the university in order to 
protect privacy and confidentiality concerns, as well to respect any proprietary or intellectual 
property rights. Administrators will consult with the university’s legal office to address any 
concerns on a case-by case basis, if necessary. Terms of use will include requirements of 
attribution along with disclaimers of liability in connection with any use or distribution of the 
research data, which may be conditioned under some circumstances. 

Suggested citation:  

Ghafelebashi Zarand, Seyed Ali; Razaviyayn, Meisam; Dessouky, Maged (2021), Congestion 
reduction via personalized incentives, Dryad, Dataset, 
https://doi.org/10.5061/dryad.ncjsxkst8   

https://doi.org/10.5061/dryad.ncjsxkst8
https://github.com/optimization-for-data-driven-science
https://github.com/optimization-for-data-driven-science
https://doi.org/10.5061/dryad.ncjsxkst8
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Appendix  

List of Notations 

The following symbols are used in this report.  

• 𝐺: Directed graph of traffic network 

• 𝑉: Set of nodes of graph 𝐺 which correspond to major intersections and ramps 

• 𝐸: Set of edges of graph 𝐺 which correspond the set of road segments 

• 𝑒: An edge of graph 𝐺 which corresponds to a road segments in the traffic network 

• |E|: Total number of road segments/edges in the network 𝐺 (i.e., the cardinality of the 
set E) 

• 𝒓: Route vector 

• 𝑻: Time horizon 

• |𝑻|:Number of time units (i.e., the cardinality of 𝑻) 

• t: One unit of time 

• 𝑣0: Capacity vector of road segments 

• 𝑣𝑡: Volume vector of road segments at time 𝑡 

• 𝑁: Set of drivers 

• |𝑁|: Number of drivers (i.e., the cardinality of the set 𝑁) 

• 𝑅𝑛: Set of possible route options for driver 𝑛 

• 𝐼𝑛: Set of possible incentives to offer to driver 𝑛 

• si
r,n: Decision parameter indicates whether incentive 𝑖 is offered to driver 𝑛 for route 𝐫 

• pi
r,n: The probability of acceptance of route 𝐫 by driver n given incentive i 

• 𝑇̂𝑟: The estimate of the travel time for route 𝐫 provided by the incentive offering 
platform 

• 𝑇𝑟: Travel time for route 𝐫 

• β𝑟,𝑡: The vector of location of driver that is driving in route 𝐫 at time 𝑡 

• 𝑞𝑖: The cost of incentive 𝑖 

• 𝑓
CE

(. ): Carbon emission function 

• 𝐿: Length of the link 

• 𝐒: Decision matrix 

• 𝐑: The matrix of location of a driver 
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• 𝐏: Route choice probability matrix 

• 𝐃: The matrix of incentive assignment to OD pairs 

• 𝐪: The vector of number of drivers for each OD pair 

• 𝐜: The vector of cost of incentives assigned to each route 

• Ω: Budget 

Robust Traffic Flow Prediction 

In this section, we present the details of our speed prediction algorithm used as the input data 
in our optimization model. The prediction algorithm is based on a fully connected Neural 
Network with historical and real-time traffic data as input and the speed of next |𝑇| times 
ahead as output. The standard approach have been minimizing a loss function l(. ) to learn a set 
of parameters 𝑤 based on the observed data (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … 𝑛: 

min
𝑤

∑ l((𝒙𝒊, 𝒚𝒊), 𝒘)

𝑛

𝑖=1

. 

For simplicity, we define 𝑓𝑖(𝑤): = l((𝑥𝑖 , 𝑦𝑖), 𝑤) and re-write the above training procedure as 

min
𝑤

∑ 𝑓𝑖(𝒘)

𝑛

𝑖=1

. 

Previous studies such as [57] predict the traffic flow/speed based on the standard approach. 
Although the average error in the previous studies is small, there is no guarantee to have a 
small error for different road segments in the network. In fact, we observe that for some 
particular road segments the predictions are far from the actual values. This could significantly 
affect our next modeling steps by moving away or bringing a lot of drivers to those road 
segments. To make the error in our predictions more reliable, we suggest the following 
modification. Motivated by the concept of conditional-value-at-risk, we propose to minimize 
the average of the 𝑘 worst prediction errors in the set of predictions. In particular, we 
formulate the problem as a min-max problem 

 



 42 

where 𝑤 is the vector of weights of Neural Network and we want to minimize the loss function 
by learning them and 𝑡 ∈ [0,1]𝑘 chooses the worst 𝑘 predictions so we maximize the objective 
function w.r.t. 𝑡. The constraint ∑ 𝑡𝑖

𝑛
𝑖=1 = 𝑘 imposes the number of worst predictions. 

Details of Alternating Direction Method of Multipliers (ADMM) 

Before explaining the steps of our proposed algorithm, let us first explain Alternating Direction 
Method of Multipliers (ADMM), which is a main building block of our framework. 

Review of ADMM 

 

where 𝑤 ∈ 𝑅𝑑1 , 𝑧 ∈ 𝑅𝑑2, 𝑐 ∈ 𝑅𝑘, 𝐴 ∈ 𝑅𝑘×𝑑1, and 𝐵 ∈ 𝑅𝑘×𝑑2. By forming the augmented 

Lagrangian function 

 

each iteration of ADMM applies alternating minimization to the primal variables and gradient 
ascent to the dual variables. More precisely, at iteration 𝑟, ADMM uses the update rules: 

 

This algorithm is well studied in the optimization literature (see [71] for a monograph on the us 
of this algorithm in convex distributed optimization, [74] for its use in non-convex continuous 
optimization, and [85] for its application in discrete optimization). 
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ADMM for Solving (9) 

Let 

 

be the augmented Lagrangian function of model (10) with the set of Lagrange multipliers 
{λ1, λ2 , … , Λ7} and ρ >  0 be the primal penalty parameter. Then, ADMM solves model (10) by 
the following iterative scheme 
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The gradient of the differentiable part of Lagrangian function w.r.t. variables 𝑆, 𝐻, 𝑊, 𝑢, and β 
can be computed as: 

 

Then the updates for primal variables are described as follows: 

 

Q-ADMM for Rounding the Solution of (9) 

The formulation of our ADMM-Q method can simply be derived from the formulation of model 
(9) by adding two constraints for Q: 
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Let 

 

be the augmented Lagrangian function of model (20) with the set of Lagrange multipliers 
{λ1, λ2 , … , Λ8} and ρ >  0 be the primal penalty parameter. Then, ADMM-Q solves model (20) 
by an iterative scheme similar to (17) in which only update rule of 𝑆 is different: 

 

and we have an update rule for the new variable 𝑄: 

 

The gradient of the differentiable part of Lagrangian function w.r.t. variables 𝐻, 𝑊, 𝑢, and β are 
similar to and the gradient w.r.t. 𝑆 and 𝑄 can be computed as: 

 

Then the updates for primal variables 𝑢, 𝑧, 𝐻, 𝑊, 𝑢, and β are similar to (19) and the updates of 
𝑆 and 𝑄 are described as follows: 

 

The steps of ADMM-Q algorithm are summarized in Algorithm 2. 
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An Example of the Model and Notations 

In this section, we provide a small example of a network to illustrate our model and notations. 
Consider the following network 

 

Figure 7. Network example 𝑮𝟏 

where 𝒱 = {ν1, ν2, ν3} is the set of nodes and ℰ = {𝑒1, 𝑒2, 𝑒3} is the set edges (roads). Details of 
setting of links is represented in Table 28. The (origin, destination) pair is (ν1, ν3). There are two 
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routes going from origin to destination so ℛ = {𝑟1, 𝑟2}. Each route is represented as 𝑟 = {0,1}3 
where 𝑖𝑡ℎ element corresponds to 𝑒𝑖. Setting of routes is provided Table 14. 

Table 27. Set of edges 

 Capacity Length (Km) Speed at free flow (Km/h) Travel time at free flow (h) 

𝑒1 1 10 50 0.2 

𝑒2 1 5 50 0.1 

𝑒3 2 5 50 0.1 

Table 28. Set of routes 

 Links 𝑟 Graph 

Route 1 𝑒2 → 𝑒3 𝑟1 = [
0
1
1

] 
 

Route 2 𝑒1 → 𝑒3 𝑟1 = [
1
0
1

] 

 

In this example, the time horizon set is 𝑇 = {1,2,3}. The speed in all three times is equal to the 
speed at free flow of the links. To estimate the location of drivers at each time, we need matrix 
𝑅 ∈ [0,1]9×6 as follows 

 

where 𝑡1 is the entrance time of the driver and 𝑡2 is the driver's arrival time at the road. In 
model (3) and (4), the column vector β𝑟,𝑡  corresponds to the columns of matrix 𝑅. For instance, 
the first column is β𝑟1,𝑡1=1. 
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Assume there are two drivers in the system and 𝒩 = {𝑑1, 𝑑2}. We want to offer rewards from 
the set ℐ = {0, to control the traffic. To estimate the probability of choosing routes given an 
offered incentive at a time, we use matrix 𝑃 ∈ [0,1]6×12 when incentive 𝑖 is offered: 

 

 

Probability matrices for all three times are equal because the speed is the same in all three 
times. We compute the probability of choosing route 𝑘 given that $𝑖′ is offered for route 𝑗′ by 
the driver as follows: 

 

where 𝑡𝑡𝑗 is the travel time of route 𝑗.  

Notations in model (8): 

 

 

𝑞 vector is a scalar in this example and is equal to 2. 

Convexity of the CO2 Emission Function 

The CO2 emission function is: 

𝑓CO2
(𝛿) = 𝑎0 − 𝑎1 ⋅ δ + 𝑎2 ⋅ δ2 − 𝑎3 ⋅ δ3 + 𝑎4 ⋅ δ4 

where the value of the coefficients are in the following table: 
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Table 29. Parameter values. 

Parameter 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 

Value 523.7 1654.4 × 10−2 2635.4 × 10−4 1771.5 × 10−6 442.9 × 10−8 

In this project the input variable of the emission function is the output of the BPR function: 

𝑔(𝑣)  =   
𝐿

𝑓BPR(𝑣)
  =  

𝐿

𝑡0
  (β0  + β1 (

𝑣

𝑤
)

4

)
−1

 

where 𝑤 is the capacity of the link, 𝑡0 is the free flow travel time of the link in hour, 𝐿 is the 

length of the link in km, 𝑣 is the volume of the link as input, β0 = 1, and β1 = 0.15. 
𝐿

𝑡0
 is the 

free flow speed of the link and we can rewrite the function as follows: 

𝑔(𝑣) = 𝑐0(β0 + β2𝑣4)−1 

where 𝑐0 is the free flow speed of the link and β2 =
β1

𝑤4. The output of function 𝑔(𝑣) is the 

speed of the link. δ as input of CO2 emission function is the output of the BPR function and we 
can rewrite the Emission function as: 

𝑓CO2

′ (𝑣) = 𝑎0 − 𝑎1 ⋅ 𝑔(𝑣) + 𝑎2 ⋅ 𝑔(𝑣)2 − 𝑎3 ⋅ 𝑔(𝑣)3 + 𝑎4 ⋅ 𝑔(𝑣)4 

To compute the second order derivative of 𝑓CO2
(𝑣) we need the first order and second order 

derivative of 𝑔(𝑣): 

𝑔′(𝑣)  =  
−4𝑐0𝛽2𝑣3

(𝛽0 + 𝛽2𝑣4)2
 

𝑔′′(𝑣) =
4𝑐0𝛽2𝑣2(5𝛽2𝑣4 − 3𝛽0)

(𝛽0 + 𝛽2𝑣4)3
 

Now, we can compute the first and second order derivatives of the function 𝑓CO2

′ (𝑣): 

𝑓CO2

′ (𝑣) = 𝑎0 + 𝑎1𝑔(𝑣) + 𝑎1𝑣𝑔′(𝑣) + 𝑎2𝑔2(𝑣) + 2𝑎2𝑣𝑔(𝑣)𝑔′(𝑣) + 𝑎3𝑔3(𝑣) +

3𝑎3𝑣𝑔2(𝑣)𝑔′(𝑣) + 𝑎4𝑔(𝑣)4 + 4𝑎4𝑣𝑔3(𝑣)𝑔′(𝑣)  

𝑓CO2

′′ (𝑣) = 𝑎1𝑔′′(𝑣) + 𝑎1𝑔′(𝑣) + 𝑎1𝑣𝑔′′(𝑣) + 2𝑎2𝑔(𝑣)𝑔′(𝑣) + 2𝑎2(𝑣𝑔′(𝑣) + 𝑔(𝑣))(𝑣)

+ 2𝑎2𝑣𝑔(𝑣)𝑔′′(𝑣) + 3𝑎3𝑔(𝑣)2𝑔′(𝑣) + 3𝑎3(𝑔(𝑣)2 + 2𝑣𝑔(𝑣)𝑔′(𝑣))𝑔′(𝑣)

+ 3𝑎3𝑣𝑔(𝑣)2𝑔′′(𝑣) + 4𝑎4𝑔3(𝑣)𝑔′(𝑣) + 4𝑎4(𝑔3(𝑣) + 3𝑣𝑔2(𝑣)𝑔′(𝑣))𝑔′(𝑣)

+ 4𝑎4𝑣𝑔3(𝑣)𝑔′′(𝑣) 

To plot 𝑓CO2

′′ (𝑣), we need two parameters: capacity of the link (𝑤) and the free flow speed of 

the link ($c_0$). We consider the average of these two values from all the links so 𝑤 =  29 and 
𝑐0 = 46.27 km/h. The second order derivative of the CO2 emission function is depicted in 
Figure 8 based on the average of the capacity of the links and average of the free flow speed of 
the links so 𝑤 = 29 and 𝑐0 = 46.27 km/h. The plot shows the convexity of the function for 𝑣 ≤
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64 which is more than two times of the average of the capacities. Therefore, for α ≤ 2.0, on 
average we have convexity for the defined CO2 emission function.  

 

Figure 8. Second order derivative of CO2 emission function 

Details of the Numerical Results 

Table 30. Distribution of the offered incentives in Experiment I for 7-8 AM 

Experiment I, Time: 7-8 AM 

Budget 
Incentive 

$0 $1 $2 $5 $10 $1000 

$1,000 6740 324 338 0 0 0 

$10,000 4210 275 1620 1297 0 0 

Table 31. Distribution of the offered incentives in Experiment I for 8-9 AM 

Experiment I, Time: 8-9 AM 

Budget 
Incentive 

$0 $1 $2 $5 $10 $1000 

$1,000 5751 258 371 0 0 0 

$10,000 3352 199 1448 1381 9 0 
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Table 32. Distribution of the offered incentives in Experiment II for 7-8 AM 

Experiment II, Time: 7-8 AM 

Budget 
Incentive 

$0 $2 $10 

$1,000 4356 500 0 

$10,000 1016 3550 290 

Table 33. Distribution of the offered incentives in Experiment II for 8-9 AM 

Experiment II, Time: 8-9 AM 

Budget 
Incentive 

$0 $2 $10 

$1,000 3808 500 0 

$10,000 876 3040 392 

Table 34. Distribution of the offered incentives in Experiment III for 7-8 AM 

Experiment III, Time: 7-8 AM 

Budget 
Incentive 

$0 $1 $2 $5 $10 $1000 

$1,000 14525 349 153 69 0 0 

$10,000 11789 945 1255 905 202 0 

Table 35. Distribution of the offered incentives in Experiment III for 8-9 AM 

Experiment III, Time: 8-9 AM 

Budget 
Incentive 

$0 $1 $2 $5 $10 $1000 

$1,000 13071 135 140 117 0 0 

$10,000 10319 785 1215 931 213 0 
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Table 36. Distribution of the offered incentives in Experiment IV for 7-8 AM 

Experiment IV, Time: 7-8 AM 

Budget 
Incentive 

$0 $2 $10 

$1,000 14641 440 12 

$10,000 11877 2770 446 

Table 37. Distribution of the offered incentives in Experiment IV for 8-9 AM 

Experiment IV, Time: 8-9 AM 

Budget 
Incentive 

$0 $2 $10 

$1,000 13077 355 29 

$10,000 10609 2315 537 
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